HIV gp120 envelope as a therapeutic target

Hwei-gene Heidi Wang¹, John Kadow², Pin-fang Lin^{1,*}

¹Department of Virology and ²Department of Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT 06492, USA. *Correspondence: e-mail: PinFang.Lin@bms.com

CONTENTS

Abstract	359
Introduction	359
gp120 inhibitors	360
Targeting the CD4 binding site	360
Targeting the co-receptor binding site	362
Targeting the V3 loop	363
Targeting the carbohydrate moieties	363
gp120 inhibitors with partially defined mechanisms	364
Conclusions	364
References	364

Abstract

The human immunodeficiency virus type 1 (HIV-1) gp120 and gp41 envelope proteins play essential roles in orchestrating the sequential, multitiered viral entry process. This review discusses antiviral agents that target several key functional areas of gp120: the CD4 and co-receptor binding sites, the V3 loop and specific carbohydrate moieties. These regions represent promising antiviral targets, and significant progress towards the development of novel entry inhibitors has been made in recent years. Importantly, an orally available, small-molecule attachment inhibitor (BMS-488043) and a fusion protein (PRO-542), both targeting the conserved CD4 binding pocket of gp120, have demonstrated clinical efficacy in humans, which validated gp120 as a viable antiviral target. The development of microbicides targeting gp120 to prevent sexual HIV transmission is also discussed.

Introduction

HIV-1 infection remains a major medical problem with approximately 40 million people worldwide currently living with the virus, about 5 million people newly infected and 3.1 million fatalities due to AIDS (acquired immunodeficiency syndrome) (1). Despite the availability of 4 classes and 24 approved antiretroviral agents (nucleoside/

nucleotide and non-nucleoside reverse transcriptase inhibitors, protease inhibitors and the fusion inhibitor enfuvirtide), treatment failure continues to occur due to the emergence of drug-resistant strains, inadequate exposure and/or poor adherence, frequently caused by drug-associated toxicity or side effects. Transmission of HIV-resistant viruses in newly diagnosed HIV infections has also been frequently documented (2, 3) and is expected to increase over time. This trend further contributes to an increased demand for new classes of antiretroviral drugs. Mucosal microbicides, topical agents for blocking HIV-1 infection, are also urgently needed to prevent sexual transmission.

Prevention of viral entry is the first line of defense against HIV infection. The entry process, mediated by HIV envelope glycoproteins, provides multiple new targets for intervention and drug discovery. HIV entry to host cells begins with the attachment of the envelope protein gp120 to cellular CD4 receptors. This high-affinity interaction initiates conformational changes in gp120 that result in sequential binding to a co-receptor (CCR5 or CXCR4), insertion of a viral gp41 fusion peptide into the host cell membrane, and the fusion of viral and cell membranes (for review, see 4).

The gp160 viral envelope precursor (~845-870 amino acids) is synthesized in the rough endoplasmic reticulum. The glycosylated gp160 trimers are proteolytically cleaved in the Golgi apparatus to an exterior gp120 and a transmembrane gp41 glycoprotein. About half of the gp120 molecular weight is provided by carbohydrates. Of the 24 asparagine (N)-linked oligosaccharides found on its surface, 11 contain a high mannose content. Sequence analysis of HIV isolates identified 5 variable (V1 through V5) regions interspersed with 5 conserved regions (C1 through C5) in gp120 (5). Intramolecular disulfide bonding of V1 to V4 results in loop formation and C1 to C5 fold into a gp120 core. This structural design allows genetically diverse HIV isolates to retain the vital mechanism of "viral entry" using the conserved core, and to simultaneously evade the host immune system via loop variation, steric occlusion of conserved areas, conformational changes and a carbohydrate camouflage (6).

The crystal structure of the HIV gp120 core (lacking V1-V2, V3 loops, N- and C-termini) in complex with a

2-domain fragment of CD4 and the Fab fragment of 17b. a monoclonal antibody (MAb) that recognizes the CCR5 co-receptor binding region of gp120, has been reported (7). This CD4-bound structure is composed of an inner and an outer domain, as well as a bridging sheet, which all contribute to interactions with CD4. Recently, the structure of a fully glycosylated simian immunodeficiency virus (SIV) gp120 core (excluding V1-V2, V3 loops and parts of N- and C-termini) in an unliganded conformation was solved (8, 9). It exemplifies the structure of gp120 before CD4 binding, yielding critical information on how gp120 rearranges itself while engaging the receptor. CD4 binds in a conserved recessed pocket of the gp120 core, which includes a shallow and a deep cavity. The opening of the deep cavity is occupied by the phenylalanine 43 (F43) residue of CD4, which contributes to 23% of all CD4 interatomic contacts with gp120 (7, 10). Extensive CD4 contacts (26) in this highly conserved gp120 pocket create an excellent opportunity for therapeutic intervention. The large bonding energy generated by gp120-CD4 binding is believed to drive reordering of gp120 V1-V2 loops, the V3 loop and the bridging sheet to form a functional co-receptor binding site (11). Subsequent binding of this site with CCR5 or CXCR4 co-receptors represents another potential antiviral target. The sequence of the gp120 V3 loop determines the choice of co-receptor the virus uses; a critical interaction for viral entry (12). The V3 and V1-V2 loops and N-linked carbohydrate on or near these variable loops have been implicated in the neutralization of HIV-1 isolates by antibodies to circumvent immune evasion, and provide additional potential targets (13, 14).

Taken together, the unique structure of gp120 offers many new antiviral targets, including the CD4 and co-receptor binding sites, the V3 loop, and even the carbohydrate shield. However, the inherent gp120 sequence diversity may pose challenges to entry inhibitor development, including limited viral strain coverage and the rapid emergence of resistance. This review summarizes various gp120 inhibitors according to target sites and provides information on their developmental status. Enfuvirtide, CCR5 and CXCR4 blockers are excluded herein due to their gp41 or cellular target origins. Moreover, since entry inhibitors are being exploited as favored topical agents for blocking HIV-1 infection, studies assessing the potential of some gp120 antagonists as microbicides are discussed.

gp120 inhibitors

Targeting the CD4 binding site

Orally available, small-molecule inhibitors

Novel, small-molecule HIV-1 attachment inhibitors, exemplified by BMS-378806 (Table I) and its analogue BMS-488043, that block viral attachment to CD4 receptors were identified at Bristol-Myers Squibb. The compounds possess potent antiviral activity in cell culture,

good oral bioavailability in animal species, and clean safety profiles in initial animal toxicology studies (15-17). Mechanism of action studies showed that attachment inhibitors blocked soluble CD4 (sCD4) binding to all 11 distinct HIV envelope gp120 proteins surveyed. They bind specifically and in an equimolar ratio to gp120 monomers. Binding of the compound and CD4 was mutually exclusive (15, 18). Attachment inhibitors also prevent virion envelope trimers from binding to sCD4 (19). Resistance mapping confirmed the inhibitor interaction sites and showed that selected substitutions span the CD4 binding pocket and other regions of the envelope. Finally, multiple gp120 variants with CD4 binding pocket substitutions were severely defective in compound binding (17, 18). Therefore, in contrast to a previous report (20), our combined data indicate that attachment inhibitor binding primarily disrupts gp120-CD4 interactions in wildtype HIV-1. A potential compound binding site was recently modeled on the SIV unliganded gp120 structure

Several attachment inhibitors are currently being evaluated in clinical trials to select an optimal candidate. The antiviral activity, safety and tolerability of BMS-488043 have been investigated in a multiple-dose study in infected adults. Mean maximal changes in plasma HIV-1 RNA of up to $-1.2 \log_{10} (21)$. This compound was well tolerated and no serious adverse events were observed. Therefore, proof-of-concept has been established for this new class of orally bioavailable antiretrovirals. Since gp120 is validated as a viable target, further development of this series of attachment inhibitors is warranted.

CD4-IgG fusion protein PRO-542

The truncated form of sCD4 exhibited good antiviral activity against laboratory-adapted HIV-1 isolates but failed as a therapeutic anti-HIV agent due to its lack of activity against patient isolates and a short serum half-life (22, 23). PRO-542 (Progenics) is a fusion protein comprised of human IgG, in which the Fv portions of both heavy and light chains have been replaced with 4 copies of the HIV binding region of the CD4 receptor (domains 1 and 2). Due to its increased valency and conformational flexibility, PRO-542 broadly and potently neutralizes diverse primary HIV-1 isolates (24, 25). A single intravenous infusion of 10 (26) or 25 mg/kg (27) of PRO-542 to treatment-experienced HIV-1 subjects provided viral load reductions of about 0.5 \log_{10} , which persisted for up to 4-6 weeks post-treatment. Administration of 4 doses (10 mg/kg) of PRO-542 weekly to infected children generated a similar viral load reduction (> 0.7 log₁₀) (28). PRO-542 appeared to be well tolerated in these studies, with no serious adverse events. However, intravenous administration and cost of protein drug may be obstacles to wider clinical use.

PRO-542 was also evaluated for its microbicidal properties. Sexual transmission of HIV-1 in women is primarily through mucosal infection of the cervical and vaginal

Table I: Profiles of selected inhibitors.

Name	Structure	Target	Development stage	Ref.
BMS-378806 and anal	logues N _N C O N N N N N N N N N N N N N N N N N N	CD4 binding site on gp120	Phases I and II	15-17, 21
FP-21399	Na O	V3 loop of gp120	Phase II	45-56
IC-9564	$\begin{array}{c} CH_3 \\ CH$	Entry	Preclinical	68-70
PA-457	$\begin{array}{c} CH_2 \\ H_3C \\ CH_3 \\ HO \\ \end{array}$	Budding	Phase II	72
LH-15 and LH-55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Entry and budding	Preclinical	73

tissues. Using human cervical mucosal tissues *in vitro*, PRO-542 was shown to block both localized HIV-1 infection and viral dissemination pathways (29), suggesting its potential application as a microbicide.

Chimeric protein sCD4-17b

To improve potency and viral strain coverage over neutralizing MAbs, a novel single-chain sCD4-17b neutralizing agent was designed. It contains sCD4 attached via a flexible polypeptide linker to a single-chain variable region of the 17b MAb (30). Individually, sCD4 and 17b proteins have minimal neutralizing abilities. However, when combined into a bifunctional protein with greater affinity for gp120, sCD4-17b potently neutralizes multiple primary HIV-1 isolates and exhibits better inhibitory activity than the neutralizing antibodies IgGb12, 2G12 (gp120 MAbs) and 2F5 (a gp41 MAb) (30). sCD4-17b is now being developed as a topical microbicide either as a purified protein or by expression in *Lactobacillus*, the major component of the microflora colonizing the healthy human vaginal tract (31).

CD4M9 and CD4M33 peptides

Inhibition of the CD4-gp120 interaction has also been attempted with CD4 mimetics. A 33-residue peptide inhibitor was constituted by replacing a loop of the scorpion toxin charybdotoxin with an equivalent of the gp120binding CDR2-like loop from CD4, which interacts directly with gp120. This miniprotein competitively inhibited the gp120-CD4 interaction and elicited antibodies specifically recognizing CD4 (32). A derivative of this miniprotein also induced exposure of CD4i epitopes (33). Further optimization provided an enhanced mini-CD4 protein (CD4M9; 28-mer) that could inhibit the replication of both laboratory-adapted and primary HIV-1 isolates, albeit with approximately 100-fold lower potency than a native sCD4 (34). Structural information on the CD4-gp120-17b complex (7) aided the synthesis of CD4M33, a new 27-aminoacid mimic with enhanced gp120 interaction properties. It binds to viral particles and diverse HIV-1 envelopes with affinity similar to native CD4 protein (35). In a sCD4/ gp120 competition ELISA, CD4M33 had IC50 values of 4.0-7.5 nM compared to values of 1.1-2.0 nM for sCD4. It inhibited the replication of 8 HIV-1 strains with EC₅₀

values close to those of sCD4. Issues associated with the development of this compound class include molecular size, pharmacokinetic properties and drug delivery. To target multiple conserved CD4 binding pockets in the trimeric gp120, bivalent CD4 miniprotein inhibitors that contained 2 CD4M9 moieties tethered by a spacer of varied length were synthesized and evaluated (36). The synthetic bivalent miniproteins showed 5-21-fold enhancement in anti-HIV activity over the monovalent miniprotein, with the most potent molecule displaying an EC $_{50}$ of 120 nM. This compound has a calculated distance of about 52 Å between binding phenylalanines, while the distance between CD4 binding sites on the gp120 trimer is approximately 30-60 Å.

In another approach, a small-molecule (MW 810), water-soluble, proteolytically stable CD4 β -turn mimetic (residues Q40 to T45 of the gp120 binding region of CD4) was reported to have a low micromolar K_d for HIV gp120 and to reduce syncytium formation. A patent application covering CD4-designed mimics has been published (37).

A phage display approach modifying the charybdotox-in scaffold resulted in the identification of effective gp120 binders lacking F43 (38). This method is potentially useful in assessing CD4/gp120 structural determinants and may facilitate the design of new attachment inhibitors. However, an alternative attempt to design small-molecule analogues to mimic the crucial features of CD4 F43 and R59 residues was unsuccessful (39).

Neutralizing MAb IgGb12

Eliciting human neutralizing MAbs which are effective against diverse HIV-1 envelopes is fraught with difficulties. Nevertheless, a select few have been identified that are highly potent against a broad spectrum of HIV-1 and possess very long serum half-lives, i.e., 50-100 times longer than those of peptides such as enfuvirtide, a marketed fusion inhibitor. MAb IgGb12 (b12 for short) has a finger-like protrusion that fits precisely into the CD4 binding site of gp120, as depicted by the b12-gp120 structural docking model (40). It broadly neutralizes subtype B HIV-1 but is less active against other subtypes (41, 42). Like PRO-542, b12 was also shown to block both localized HIV-1 infection and viral dissemination in vitro in human cervical mucosal tissues (43). However, the development of an MAb as a potential therapeutic agent needs to overcome issues associated with production cost and drug delivery.

Targeting the co-receptor binding site

CCR5 N-terminal peptides

Both CCR5 and CXCR4 co-receptors contain negatively charged sulfotyrosines in the *N*-terminal gp120 binding regions that appear essential for function. For the CCR5 receptor, the 9 *N*-terminal amino acids (positions

10-18) and the 2 sulfotyrosines contained within (residues 10 and 14) are believed to be the minimal structure which binds to gp120 (44). As an example, an Nterminal peptide (the first 22 amino acids of the CCR5 Nterminus with tyrosines 10 and 14 sulfated and cysteine 20 altered to a serine) inhibited R5 virus infection at concentrations of 100-200 µM (45). The same sulfated peptide could also restore function to a CCR5 variant lacking residues 2-17 in the N-terminal region, suggesting that the tyrosine-sulfated region of the CCR5 N-terminus can act independently to mediate binding of chemokines and the HIV-1 envelope with the remaining domains of CCR5 (46). On the contrary, a full-length peptide reconstructing the entire N-terminal region of CCR5 failed to inhibit the entry of R5 viruses even in the sulfated form, and was shown to unexpectedly increase the infectivity of CXCR4 viruses through the upregulation of both CD4 and CXCR4 receptors (47). The seeming discrepancy with earlier data could be attributed to the lower concentrations used in this study (25-50 μM) or the fact that a full-length peptide was used instead of the truncated N-terminal region. This approach remains at an early research stage.

CCR5 extracellular loop peptides

Synthetic peptides corresponding to CCR5 extracellular loops 1, 2 or 3 caused concentration-dependent inhibition of fusion and HIV infection, although potencies and specificities varied for different envelopes. Due to the high concentrations (\geq 25 μ g/ml) required to achieve \geq 50% inhibition in sensitive strains, in addition to linear sequence determinants, the ordered structural peptide motifs are likely to be important. Combining suboptimal doses of 3 peptides (15 µg/ml) provided greater inhibition against some strains than after a single peptide (48). In another study, peptide mimics derived from the first extracellular loop of CCR5 bearing nonpeptide spacers in place of Ala-Ala-Ala residues in the CCR5 peptide moiety inhibited HIV-1 replication (49). Future progress in this and the CCR5 N-terminal peptide areas will likely entail size reduction, potency improvement and the development of drug-like sulfated tyrosines or isosteric replacements to maintain affinity for gp120.

Neutralizing Fab X5

Screening of human phage display libraries against a gp120-CD4-CCR5 complex to elicit broadly neutralizing MAbs led to X5, a custom-designed Fab (50). The X5 epitope was mapped to the vicinity of I423 and K432 on gp120 by site-directed mutagenesis and crystallography (51), which overlaps the MAb 17b binding site on gp120. The X5 footprint is very close to the CD4 and the coreceptor binding sites on gp120, but does not overlap them (51). This antibody inhibited infection of representative primary HIV-1 isolates from multiple subtypes with an efficiency comparable to that of the broadly neutralizing MAb b12 (50). However, in a separate study, X5 was

shown to neutralize only the sensitive HIV subtype B primary isolates (42). Due to its critical binding site on gp120, X5 can potentially be a useful component of a multi-MAb cocktail.

Targeting the V3 loop

Neutralizing MAb 447-52D

The MAb 447-52D neutralizes up to 47% of subtype B HIV-1 strains (41, 42) and docks to the conserved GPGR motif at the tip of the V3 loop. This loop is essential for gp120 binding to the HIV co-receptors (12). However, 447-52D does not appear to neutralize virus with the GPGQ motif that is prevalent in non-subtype B isolates (41). Combination with other anti-HIV agents will be needed to attain its potential use.

Neutralizing MAb hNM01

hNM01 is a humanized monoclonal antibody that binds to the V3 loop region (GPGRAF motif) of HIV-1 gp120. This binding leads to the activation of complement, disruption of the viral envelope and neutralization of at least 20 clinical isolates tested (52). An initial phase I dose-escalating study of hNM01 (0.2-5 mg/kg) administered intravenously showed that the antibody was well tolerated, with a mean elimination half-life of 6.4 days (53). However, hNM01 did not exert significant therapeutic effect. Additional studies with higher doses to evaluate efficacy and toxicity are being planned.

FP-21399

FP-21399 (Lexigen Pharmaceuticals) is a bis-azo compound, a member of the naphthalenesulfonic acid family (Table I). It inhibits viral entry to the cell likely by interacting with the gp120 V3 loop, as evidenced by blockade of the interaction between gp120 and antibodies against the V3 loop (54). An FP-21399-resistant virus harbors substitutions in the V3 and V4 regions of gp120, further supporting its molecular target (54, 55). A phase I study evaluated once-weekly intravenous administration of FP-21399 at doses of 1, 2 and 3 mg/kg for 4 consecutive weeks to 34 HIV-infected patients and found to be to well tolerated. CD4+ cell counts improved about 15% in some patients. Viral load reductions from -0.5 log₁₀ to undetectable levels were observed in 4 patients (56). However, FP-21399 is no longer in development due to its compound color (personal communications).

Anionic polymers

Several polyanionic compounds, including dextrin-2-sulfate, cellulose sulfate, carrageenan, PRO-2000,

SAMMA (mandelic acid condensation product) and cellulose acetate phthalate, are being evaluated as microbicides and have successfully undergone phase I clinical studies and beyond. A common property of these anionic polymers is their negative charge at neutral pH. Their antiviral activity is mediated by charge-based interactions with the positively charged areas of gp120, mainly in the V3 loop and the co-receptor binding areas. This binding likely impairs the viral entry function of the envelope. Some polyanionic compounds may also strip gp120 from the virus and inactivate it. Although this class of compounds has the advantage of low development cost and a reduced risk of systemic toxicity due to high molecular mass, the main concern is that most cationic V3 loops are specific to X4 viruses, which is not the key virus transmitted sexually (57, 58).

Targeting the carbohydrate moieties

Neutralizing MAb 2G12

The human neutralizing antibody MAb 2G12 recognizes a unique conformational gp120 epitope which is comprised of terminal mannose residues on 3 proximally located N-linked glycans to form an antibody footprint (14). The relative conservation of the gp120 glycan structure enables 2G12 to neutralize many subtype B HIV-1 isolates and some isolates from other subtypes (41, 42, 59). Once bound, 2G12 prevents gp120 from functioning during receptor attachment and fusion, probably by impeding gp120 binding to the co-receptor. Recent attempts have been made to determine whether combining 2G12 with the gp41 MAbs 2F5 and 4E10 could improve efficacy and reduce the potential for neutralization escape in humans. The initial phase I study showed that 2G12, 2F5 and 4E10 can be co-administered safely (60). Additional studies are now ongoing to determine if the combination approach can enhance antiviral effects.

Cyanovirin-N protein

Cyanovirin-N (CVN), an 11-kDa protein isolated from a cyanobacterium, exerted broad antiviral activity against diverse strains of HIV-1, HIV-2 and feline and simian immunodeficiency viruses. The protein interacted with high avidity with gp120 in a carbohydrate-dependent manner that occluded or altered the binding sites of MAb 2G12 (61, 62). CVN binding to gp120 led to steric blockage and/or conformational changes of gp120, resulting in the inaccessibility of the co-receptor binding site. Furthermore, CVN was reported to induce gp120 dissociation from target cells. The inhibition mechanism(s) of CVN involves interference with essential interactions between gp120 and cellular receptors (63, 64).

The broad antiviral activity, minimal cytotoxicity and resistance to physicochemical degradation make CVN an attractive candidate as a microbicide. The *in vivo* efficacy

of CVN gel was demonstrated in vaginal challenge and rectal transmission macaque models using a chimeric SIV/HIV-1 virus (65, 66). However, an efficient protein expression strategy will be required to sustain sufficient CVN concentrations in the vaginal mucosa and to overcome the high development cost of a protein microbicide (67). Potential immunogenicity of protein microbicides is also a concern.

gp120 inhibitors with partially defined mechanisms

Betulinic acid derivatives

The anti-HIV mechanism of betulinic acid derivatives varies widely with structure and the side-chain position. While the mechanism of IC-9564, with side-chains at the C-28 acid position and a free hydroxy group at position 3 (Table I), has not been unambiguously determined, it has been shown to inhibit the entry of both R5 and X4 HIV-1 and to target gp120 (68, 69). Selection with IC-9564 resulted in a T198P mutation mapped to gp120 of a primary isolate, which may cause resistance via an allosteric change in the envelope conformation (70). IC-9564 is in the preclinical stage of development.

Conversely, other betulinic derivatives containing side-chains at the 3 position and an unsubstituted C-28 acid, such as the HIV-1 maturation inhibitor PA-457 (Table I) (71, 72), exert their activities late in the viral life cycle. Recently, compounds with side-chains at both the C-3 and C-28 positions were prepared to assess their potential for blocking both HIV entry and maturation (Table I). Two compounds, LH-15 and LH-55 (Table I), were found to exhibit potency at least 1 log better than PA-457 or IC-9564 in an infectivity assay (73). In addition, these dual side-chain compounds inhibited viruses resistant to betulinic acid derivatives containing only a single side-chain at either position 3 or 28, suggesting that they are indeed able to work by two separate mechanisms.

12p1

A linear peptide, 12p1 (RINNIPWSEAMM) was isolated from a phage display library (74) and found to inhibit the interaction of gp120 with both CD4 and MAb 17b, a CCR5 surrogate, with IC $_{50}$ values of 1.1 and 1.6 $\mu\text{M},$ respectively (75). 12p1 binds directly to gp120 with a binding stoichiometry of 1:1. Studies demonstrated that the peptide is an allosteric rather than a competitive inhibitor of CD4 binding and likely acts prior to achievement of a CD4-bound conformation of gp120. These results indicated that 12p1 binds to a unique site that may be a new target for novel CD4-gp120 inhibitors.

Conclusions

The HIV-1 gp120 envelope represents a new stage of the viral life cycle that can be effectively inhibited with small-molecule compounds, peptides, proteins and antibodies. Since currently available anti-HIV agents target reverse transcriptase, protease and the gp41-mediated fusion process, gp120 inhibitors are expected to be effective in patients already infected with viruses resistant to marketed drugs, thereby preserving therapeutic options for both treatment-naïve and -experienced patients. It is worth noting that gp120 inhibitors work extracellularly before virus entry and thus do not require cell uptake for antiviral activity. This class of antiretroviral agents may have fewer safety issues compared to co-receptor blockers, since the compounds target virus instead of a host cell target. Furthermore, new therapeutic combinations may be possible, as demonstrated by the synergistic antiviral effect seen in vitro when two HIV entry inhibitors are combined (76, 77). The enhanced antiviral effect may result from the interdependence of various entry steps. Although genetic diversity of the gp120 protein affects the viral strain coverage and resistance development rate. chemistry efforts to broaden the antiviral range appear feasible. Inhibitors with improved potency and better pharmacokinetic properties should also increase the viral strain coverage. Finally, co-administration with other anti-HIV agents in patients to reduce viral load threshold should significantly impede resistance development.

Steady efforts to develop approaches against HIV entry have continued since the initial failed attempts to use sCD4 in the clinic. Despite issues with drug delivery and production cost, the biological agent PRO-542, with a broad anti-HIV spectrum, holds promise for those patients failing current therapy. The fact that an orally available, small-molecule inhibitor like BMS-488043 exhibits excellent antiviral potency in infected patients further establishes gp120 as an exciting new antiviral target. Hopefully, various ongoing efforts in developing gp120 inhibitors will reach fruition in a not too distant future. Because an effective vaccine is currently not on the horizon, effective microbicides will be critical for preventing HIV sexual transmission. Since blocking HIV entry is the first line of defense against viral infections, gp120 is considered as a favored target for rational microbicide development and many potentially cost-effective HIV entry inhibitors are now being developed.

In summary, gp120 provides exciting alternative anti-HIV targets for new treatment and prevention measures, and thus may eventually offer more options for patients. Additional studies with this class of inhibitors are also likely to further enhance our understanding of the HIV-1 envelope structure and the viral entry process.

References

- 1. AIDS Epidemic Update. UN AIDS, Geneva, Switzerland 2004.
- 2. Grant, R.M. et al. *Time trends in primary HIV-1 drug resistance among recently infected persons*. JAMA J Am Med Assoc 2002, 288(2): 181-8.
- 3. Little, S.J. et al. Antiretroviral-drug resistance among patients recently infected with HIV. New Engl J Med 2002, 347(6): 385-

94.

- 4. Doms, R.W. *Unwelcome guests with master keys: How HIV enters cells and how it can be stopped.* Top HIV Med 2004, 12(4): 100-3.
- 5. Starcich, B.R. et al. *Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS*. Cell 1986, 45: 637-48.
- 6. Wyatt, R., Sodroski, J. *The HIV-1 envelope glycoproteins: Fusogens, antigens, and immunogens.* Science 1998, 280: 1884-8.
- 7. Kwong, P.D. et al. Structure of an HIV gp120 envelope glyco-protein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998, 393: 648-59.
- 8. Chen, B. et al. Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 2005, 433(7028): 834-41.
- 9. Chen, B. et al. *Determining the structure of an unliganded and fully glycosylated SIV gp120 envelope glycoprotein.* Structure 2005, 13(2): 197-211.
- 10. Kwong, P.D. et al. *Structures of HIV-1 gp120 envelope gly-coproteins from laboratory-adapted and primary isolates.* Structure 2000, 8: 1329-39.
- 11. Rizzuto, C.D. et al. *A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding.* Science 1998, 280(5371): 1949-53.
- 12. Cocchi, F. et al. The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nat Med 1996, 2(11): 1244-7.
- 13. Ly, A., Stamatatos, L. *V2 loop glycosylation of the human immunodeficiency virus type 1 SF162 envelope facilitates interaction of this protein with CD4 and CCR5 receptors and protects the virus from neutralization by anti-V3 loop and anti-CD4 binding site antibodies.* J Virol 2000, 74(15): 6769-76.
- 14. Calarese, D.A. et al. *Antibody domain exchange is an immunological solution to carbohydrate cluster recognition*. Science 2003, 300(5628): 2065-71.
- 15. Lin, P.-F. et al. *A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding.* Proc Natl Acad Sci USA 2003, 100 (19): 11013-8.
- 16. Wang, T. et al. Discovery of 4-benzoyl-1-[(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2-(R)-methylpiperazine (BMS-378806): A novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions. J Med Chem 2003, 46(20): 4236-9.
- 17. Lin, P.F. et al. Characterization of a small molecule HIV-1 attachment inhibitor BMS-488043: Virology, resistance and mechanism of action. 11th Conf Retroviruses Opportunistic Infect (Feb 8-11, San Francisco) 2004, Abst 534.
- 18. Guo, Q. et al. *Biochemical and genetic characterizations of a novel human immunodeficiency virus type 1 inhibitor that blocks qp120-CD4 interactions.* J Virol 2003, 77(19): 10528-36.
- 19. Ho, H.T. et al. *Inhibition mechanism of small-molecule HIV-1 attachment inhibitors*. 12th Conf Retroviruses Opportunistic Infect (Feb 22-25, Boston) 2005, Abst 544.
- 20. Si, Z. et al. Small-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins. Proc Natl Acad Sci USA 2004, 101(14): 5036-41.
- 21. Hanna, G. et al. Antiviral activity, safety, and tolerability of a novel, oral small-molecule HIV-1 attachment inhibitor, BMS-

- 488043, in HIV-1-infected subjects. 11th Conf Retroviruses Opportunistic Infect (Feb 8-11, San Francisco) 2004, Abst 141.
- 22. Daar, E.S. et al. High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proc Natl Acad Sci USA 1990, 87(17): 6574-8.
- 23. Schacker, T. et al. *The effects of high-dose recombinant sol-uble CD4 on human immunodeficiency virus type 1 viremia.* J Infect Dis 1994, 169(1): 37-40.
- 24. Allaway, G.P. et al. Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. AIDS Res Hum Retroviruses 1995, 11(5): 533-9.
- 25. Trkola, A. et al. Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J Virol 1995, 69(11): 6609-17
- 26. Jacobson, J.M. et al. Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J Infect Dis 2000, 182(1): 326-9.
- 27. Jacobson, J.M. et al. *Treatment of advanced human immunodeficiency virus type 1 disease with the viral entry inhibitor PRO 542.* Antimicrob Agents Chemother 2004, 48(2): 423-9.
- 28. Shearer, W.T. et al. Recombinant CD4-IgG2 in human immunodeficiency virus type 1-infected children: Phase 1/2 study. The Pediatric AIDS Clinical Trials Group Protocol 351 Study Team. J Infect Dis 2000, 182(6): 1774-9.
- 29. Hu, Q. et al. *Blockade of attachment and fusion receptors inhibits HIV-1 infection of human cervical tissue.* J Exp Med 2004, 199(8): 1065-75.
- 30. Dey, B. et al. Neutralization of human immunodeficiency virus type 1 by sCD4-17b, a single-chain chimeric protein, based on sequential interaction of gp120 with CD4 and coreceptor. J Virol 2003, 77(5): 2859-65.
- 31. Berger, E.A. et al. *Protecting against HIV-1 sexual transmission by exploiting Env-coreceptor interactions*. Immunology 2004, 113(Suppl. 1): 86-8.
- 32. Drakopoulou, E. et al. Engineering a CD4 mimetic inhibiting the binding of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein gp120 to human lymphocyte CD4 by the transfer of a CD4 functional site to a small natural scaffold. Lett Peptide Sci 1998, 5(2-3): 241-5.
- 33. Zhang, W. et al. Conformational changes of gp120 in epitopes near the CCR5 binding site are induced by CD4 and a CD4 miniprotein mimetic. Biochemistry 1999, 38(29): 9405-16.
- 34. Vita, C. et al. Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. Proc Natl Acad Sci USA 1999, 96(23): 13091-6.
- 35. Martin, L. et al. *Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes crytic neutralization epitopes*. Nat Biotech 2003, 21: 71-6.
- 36. Li, H. et al. Synthetic bivalent CD4-mimetic miniproteins show enhanced anti-HIV activity over the monovalent miniprotein. Bioconjugate Chem 2004, 15(4): 783-9.
- 37. Samanen, J. (SmithKline Beecham Corp.). *Preparation of modified peptides and cyclopeptides as CD4 mimetic ligands for inhibiting HIV.* WO 9826660.

- 38. Li, C. et al. Phage randomization in a charybdotoxin scaffold leads to CD4-mimetic recognition motifs that bind HIV-1 envelope through non-aromatic sequences. J Peptide Res 2001, 57(6): 507-18.
- 39. Boussard, C. et al. *Design, synthesis and evaluation of potential inhibitors of HIV gp120-CD4 interactions.* Bioorg Med Chem Lett 2004, 14(10): 2673-6.
- 40. Saphire, E.O. et al. *Crystal structure of a neutralizing human IgG against HIV-1: A template for vaccine design*. Science 2001, 293(5532): 1155-9.
- 41. Burton, D.R. et al. *HIV vaccine design and the neutralizing antibody problem*. Nat Immunol 2004, 5(3): 233-6.
- 42. Binley, J.M. et al. Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 2004, 78(23): 13232-52.
- 43. Hu, Q. et al. *Blockade of attachment and fusion receptors inhibits HIV-1 infection of human cervical tissue.* J Exp Med 2004, 199(8): 1065-75.
- 44. Cormier, E.G. et al. Mapping the determinants of the CCR5 amino-terminal sulfopeptide interaction with soluble human immunodeficiency virus type 1 gp120-CD4 complexes. J Virol 2001, 75(12): 5541-9.
- 45. Farzan, M. et al. A tyrosine-sulfated peptide based on the N terminus of CCR5 interacts with a CD4-enhanced epitope of the HIV-1 gp120 envelope glycoprotein and inhibits HIV-1 entry. J Biol Chem 2000, 275(43): 33516-21.
- 46. Farzan, M. et al. *Tyrosine-sulfated peptides functionally reconstitute a CCR5 variant lacking a critical amino-terminal region*. J Biol Chem 2002, 277(43): 40397-402.
- 47. Dettin, M. et al. *CCR5 N-terminus peptides enhance X4 HIV-1 infection by CXCR4 up-regulation*. Biochem Biophys Res Comm 2003, 307(3): 640-6.
- 48. Agrawal, L. et al. Specific inhibition of HIV-1 coreceptor activity by synthetic peptides corresponding to the predicted extracellular loops of CCR5. Blood 2004, 103(4): 1211-7.
- 49. Ikeda, K. et al. *Synthesis and biological evaluation of peptide mimics derived from first extracellular loop of CCR5 toward HIV-1*. Chem Pharm Bull 2004, 52(12): 1479-82.
- 50. Moulard, M. et al. *Broadly cross-reactive HIV-1-neutralizing human monoclonal FAb selected for binding to gp120-CD4-CCR5 complexes*. Proc Natl Acad Sci USA 2002, 99(10): 6913-8.
- 51. Darbha, R. et al. *Crystal structure of the broadly cross-reactive HIV-1-neutralizing Fab X5 and fine mapping of its epitope.* Biochemistry 2004, 43(6): 1410-7.
- 52. Nakamura, M. et al. *Virolysis and in vitro neutralization of HIV-1 by humanized monoclonal antibody hNM-01*. Hybridoma 2000, 19(6): 427-34.
- 53. Dezube, B.J. et al. *Monoclonal antibody hNM01 in HIV-infected patients: A phase I study.* J Clin Virol 2004, 31(Suppl. 1): S45-7.
- 54. Ono, M. et al. *FP-21399 blocks HIV envelope protein-mediated membrane fusion and concentrates in lymph nodes.* Nat Biotechnol 1997, 15(4): 343-8.

- 55. Zhang, J.L. et al. *The bis-azo compound FP-21399 inhibits HIV-1 replication by preventing viral entry.* Virology 1998, 244(2): 530-41.
- 56. Dezube, B.J. et al. A fusion inhibitor (FP-21399) for the treatment of human immunodeficiency virus infection: A phase I study. J Infect Dis 2000, 182(2): 607-10.
- 57. D'Cruz, O.J., Uckun, F.M. *Clinical development of microbicides for the prevention of HIV infection*. Curr Pharm Des 2004, 10(3): 315-36.
- 58. Shattock, R.J., Moore, J.P. *Inhibiting sexual transmission of HIV-1 infection*. Nat Rev Microbiol 2003, 1(1): 25-34.
- 59. Mehandru, S. et al. Neutralization profiles of newly transmitted human immunodeficiency virus type 1 by monoclonal antibodies 2G12, 2F5, and 4E10. J Virol 2004, 78(24): 14039-42.
- 60. Armbruster, C. et al. *Passive immunization with the anti-HIV-1 human monoclonal antibody (hMAb) 4E10 and the hMAb combination 4E10/2F5/2G12*. J Antimicrob Chemother 2004, 54(5): 915-20.
- 61. Esser, M.T. et al. Cyanovirin-N binds to gp120 to interfere with CD4-dependent human immunodeficiency virus type 1 virion binding, fusion, and infectivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational changes in gp120. J Virol 1999, 73(5): 4360-71.
- 62. Boyd, M. et al. *Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development.* Antimicrob Agents Chemother 1997, 41(7): 1521-30.
- 63. Dey, B. et al. Multiple antiviral activities of cyanovirin-N: Blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J Virol 2000, 74(10): 4562-9.
- 64. Mori, T., Boyd, M.R. Cyanovirin-N, a potent human immunodeficiency virus-inactivating protein, blocks both CD4-dependent and CD4-independent binding of soluble gp120 (sgp120) to target cells, inhibits sCD4-induced binding of sgp120 to cell-associated CXCR4, and dissociates bound sgp120 from target cells. Antimicrob Agents Chemother 2001, 45(3): 664-72.
- 65. Tsai, C.C. et al. *Cyanovirin-N gel as a topical microbicide prevents rectal transmission of SHIV89.6P in macaques.* AIDS Res Hum Retroviruses 2003, 19(7): 535-41.
- 66. Tsai, C.C. et al. *Cyanovirin-N inhibits AIDS virus infections in vaginal transmission models*. AIDS Res Hum Retroviruses 2004, 20(1): 11-8.
- 67. Giomarelli, B. et al. The microbicide cyanovirin-N expressed on the surface of commensal bacterium Streptococcus gordonii captures HIV-1. AIDS 2002, 16(10): 1351-6.
- 68. Holz-Smith, S.L. et al. Role of human immunodeficiency virus (HIV) type 1 envelope in the anti-HIV activity of the betulinic acid derivative IC9564. Antimicrob Agents Chemother 2001, 45(1): 60-6.
- 69. Sun, I.C. et al. Anti-AIDS agents 49. Synthesis, anti-HIV, and anti-fusion activities of IC9564 analogues based on betulinic acid. J Med Chem 2002, 45(19): 4271-5.

- 70. Yuan, X. et al. Conformation of gp120 determines the sensitivity of HIV-1 DH012 to the entry inhibitor IC9564. Virology 2004, 324(2): 525-30.
- 71. Li, F. et al. *PA-457: A potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing.* Proc Natl Acad Sci USA 2003, 100(23): 13555-60.
- 72. Aiken, C., Chen, C.H. Betulinic acid derivatives as HIV-1 antivirals. Trends Mol Med 2005, 11(1): 31-6.
- 73. Huang, L. et al. *Bifunctional anti-human immunodeficiency virus type 1 small molecules with two novel mechanisms of action*. Antimicrob Agents Chemother 2004, 48(2): 663-5.
- 74. Ferrer, M., Harrison, S.C. *Peptide ligands to human immunodeficiency virus type 1 gp120 identified from phage display libraries*. J Virol 1999, 73(7): 5795-802.
- 75. Biorn, A.C. et al. *Mode of action for linear peptide inhibitors of HIV-1 gp120 interactions.* Biochemistry 2004, 43(7): 1928-38.
- 76. Tremblay, C.L. et al. *Strong in vitro synergy between the fusion inhibitor T-20 and the CXCR4 blocker AMD-3100*. J Acquir Immune Defic Syndr 2000, 25(2): 99-102.
- 77. Nagashima, K.A. et al. *Human immunodeficiency virus type* 1 entry inhibitors *PRO 542* and *T-20* are potently synergistic in blocking virus-cell and cell-cell fusion. J Infect Dis 2001, 183(7): 1121-5.